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1. INTRODUCTION

The objectives of this report are to present the results of control systems analysis and their

potential applications to control systems synthesis for high performance aircraft, and identify a

proven, tractable and portable methodology to quantify the robust stability and perfornance of

highly integrated digital fly-by-wire control systems. These systems are characterized by multiple

distributed sensing, processing, and actuator elements interconnected by a time-division-

multiplexed digital data bus layer. The aircraft division of Naval Air Warfare Center at

Warminster, PA is supporting this research for developing an analytical methodology and

associated tools to assess the stability and performance robustness of multi-input multi-output

(MIMO), bus-organized digital flight control systems The computation elenents and subsystem

modules within the control system may have a multi-rate structure, usually but not always, *n :

whole integer ratio. Task synchronization between these elements may range from no

synchronization to synchronization at the CPU clock level.

This research project consists of two phases that arc to be performed sequentially. The

results of Phase 1 of the project are presented in this report which addresses the development of a

robustness asscssici, nxathodology suitable for analyzing a generic class of MIMO, bnt-

organized flight control systems. The future work in Phase 2 is projected to deal with

implementation and validation of the methodology developed in Phase 1. This implementation in

Phase 2 should account for bus data delays- multiple distributed computation delays, and various

degrees of synchronism (or lack thereof) between the distributed processing elements and the data

bus. This report is intended to provide useful information to the engineers and scientists from

different organizations of DoD, NASA, and leading aerospace companies.

The currently available theories and methodologies for robustness assessment of multi-input,

multi-output (MIMO) systems have been reveiwed and thoroughly examined in this report, Recent

literature has shown three major different approaches to address the robust stability and

performance -f MIMO control systems, The first approach relies on the structured singular value

(gt) and H. analyses in the framework of Linear Fractional Transformations (LFT) of MIMO

systems that are subjected to uncertainties with known bounds [Doyle (1982)1 and JSafonov

(1982)]. The concepts and fundamental results and applications of p.-analysis and p-synthesis are

presented in the publications of Doyle and his coworkers [Skogestad et al. (1988), Stein and Doyle

(1991), Balas et al. (1991), Packard and Doyle (1993), Packard et al. (1993)]. The second

approach [Yeh et al. (1985a), Molander and Willems (1980), Tao et al. (1991)] generalizes the

definition and calculation of gain and phase margins for MIMO systems ana!ogous to those for
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single-input, single-output (SISO) systems. The third approach IFreudenberg and Looze (1986),

Freudcnberg (1990)] cxamine,, the relationship between the open loop gain and phase with respect

to the closed loop sensitivity and complementary sensitivity functions lb SISO systems, and then

formulates heuristic rules for shaping the loop transfer functions for MIMO system,. We have

emphasized the first approach of p-analysis for robustness assessment of MIMO systems, %% hich

constitutes the main body of this report. A simulation example has been provided to illustrate its

usage. However, technical discussions on the second and third approaches are presented in the

appendices wi!hout any simulhtion examples.

The stability robustness tests for MIMO systems starts with the basic requirement that the

nominal closed-loop system must be stable, which can be tested via the multivariable Nyquist

stability theory. Furthermore, stability robustness tests are also based on the multivariable Nyquist

theory which is briefly described in one of the appendices.

This report is organized in five sections and three appendices. Section 2 presents the basic

concept of the structured singular value (4) and its properties along with the techniques of Pt-

analysis and ri-synthesis. The results of simulation experiments for the flight control system of an

advanced aircraft are discussed in Section 3 to illustrate the efficacy of the rI-analysis technique for

MIMO systems. Section 4 describes the codes, developed in the MATLAB clnvironmcri, which

can be used for robustness analysis and synthesis of MIMO control systems. The last section

summarizes and concludes the findings of this research report. Appendix A briefly describes the

principle of multivariable Nyquist criterion which is essential for understanding the stability of

closed loop control systems. Appendix B provides a general definition and computational methods

for gain and phase margins of MIMO systems in a framework analogous to those for SISO

systems. Appendix C describes the relationship between open loop gain and phase with respect to

the closed loop sensitivity and complementary sensitivity functions for SISO systems, and then

formulates heuristic rules for shaping the loop transfer functions for MIMO systems.

2
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2. STRUCTURED SINGULAR VALUE (gi) ANALYSIS

This section introouces the tcchnique of robustness analysis for MIMO control systems
based on H, and gi-analysis & synthesis.

2.1. The Structured Singular Value

Figure 2-1 shows how the plant perturbations represented by A(s), se C, interact with the

finite-dimensional, linear, time-invariant control system M(s) E Cnxn which is the based on the

nominal plant model. The input V to the control system M consists of: all exogenous signals,

namely, the reference command(s) to be trackcd, disturbances and sensor noise; and the feedback

control input. The output of the control system M consists of: all plant variables needed for

specifying the stability and performance criteria; and the sensor data feeding the controller. In the
definition of the structured singular value pA (M(so)) of the transfer matrix M(s) at a given So,

the underlying uncertainty A(s) belongs to a set of matrices, Af(s), which is prescribed to have a

block diagonal structure with the following three characteristics:

" Type of each block;
" Total number of blocks;
" Dimension of each block.

In general, there are two types of blocks: Repeated scalir blocks and full blocks. Let two

nonnegative integers, S and F, represent the number of repeated scalar blocks and the number of
full blocks, respectively. We introduce positive integers, r1. .rs,*ml...,mF, to represent the

dimensions of these blocks such that

" The th repeated scalar block is 6i,, where 1,, is the ri x i identity matrix and 45i E C

* Theith full block belongs to C"JxmJ.

M

Figure 2-1. The Closed-Loop Control system

1)djfiition 1: The block diagonal structure, A(s). is defined as:

A(s) {diag[E5j(s)lri --..,S(S)r.Al(s),...,A(S):6iL C C, A, G Cm' i }C CAx (I

3
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The following constraint must be satisfied for consistency of the dimensions:

S F

I ,+ Y1j= n (2)
1=1 j=I

The following notation is introduced in -erms of norm-bounded subsets of A6

BA = {A 4EA:'(A)11 (3)

Defintion 2 : For anyM Cnxn, its structured singular value uj (M) is defined as:

inf ():A ,det(I-MA) = O}

0 1VA A,det(I- Mz)tO

R.RcitnarL1: The physical significance ofPA6 (M) can be interpreted following the feedback loop in

Figure 2- 1 where the loop equations are:

--- MV; and V=A (5)

As long as I - MA is nonsingular, the only solution for the loop equations is yf = 4 = 0.

However, if I - MA is singular, then there are infinitely many solutions, and the norms II II and
-1

Ii II can be arbitrarily large. Thus the feedback system becomes unstable. Hence, (L (M)) is

a measure of the smallest A belonging to a given class of uncertainty soucture that causes
-1

instability of the above MIMO feedback loop. In other words, (I'A (M)) is the size of the

smallest "destabilizing" A e A which satisfies the condition of det(I - MA) = 0. It follows from

the MIMO Nyquist stability test (see Appendix A) that the zeros of det(I - MA) are the closed-

loop poles of the feedback system. Therefore, it M = M(so) is a transfer matrix evaluated at a
--I

point so in the complex plane, (ICA (M)) is the size of the smallest allowable A which moves a

closed-loop pole to that location So.

The structured singular value IA (M) of a transfer matrix M can be related to the familiar

linear algebraic quantities if A(s) is bounded for every se C as seen below IDoyle et al. (1982)1:

&j1f1L 1: If A={I:6eC}(S=J,F=O,r, =n). then u,A(M)=p(M) where p(M) is the

spectral radius of M.

4
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.,IWL2: If A =C '-× ' (S -O,F = 1,mj = n), then uA(M) = Z(M) where J(M) is the largest
singular value of M.

REI3: For a general A, the following inequality holds.

c3l,:8 E} c 4 c C (6)

From the definition of ji, and Results 1 and 2 above, it follows that:

p(M) -Ypd (M) _ "T(M) (7)

Since the difference between p and 6 can be very large, the bounds in Result 3 may not be
sufficiently tight for evaluation of pA (M). The following result [Doyle (1982)] snows how these

bounds can be refined by transformations on M that do not affect PA (M) but do affect p and d.

&eslt 4: The following property of /ja (M) holds:

PIA(MQ) =U A(QM) =t PA(M) = P A (DMD- ) (8)

,with Q* ffQ QA 6A "6(QA)=-F(AQ)=6F(A) DA =-AD (9)

for any A E 4, D r D and Q E Q where the sets D and Q are defined as:

D={iagD:.~,i~m1d"Fm ,I.- IDi ECr, x", Di = D, >0, di eR, d > 01
Q = {Qr= A:.Q*Q I1  (10)

Furthermore the bounds of p (M) in (7) can be tightened to

rtnax max n
MIXp(QM ) < m x p(AM ) -t,ul ( M )! < n DMD - 1  011)

QEQ A .BA DE D

It is shown that the lower bound in eq. (11) is an equality [Doyle (1982)]. Apparently, no

analytical techniques exist to find the global maximum of the spectral radius p(QM) although it

may have local maxima. Thus local search cannot be guaranteed to obtain t from its lower bound.

The 1. software package [Balas et al. (1991)] uses a slightly different algorithm to compute the

lower bound. While th,.re are open questions about its convergence, this algorithm usually works

well and has proven to be an effective tool for approximate computation of pt.

The upper bound can be reformulated as a convex optimization problem so that the global

minimum can he found in principle. Unfortunately, the least upper bound is not always equal to

5
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I. For block structures 4 satisfying 2S + F _ 3, the least upper bound has been shown to be
always equal to /.A (M); and for block structures with 2S + F > 3, iL may not attain the least

upper bound. These results are summarized in the Table 2-1 to show for which cases the least

upper bound is guaranteed to be equal to Ii.

Table 2-1. Conditions for g. reaching its upper bound

0 1 2 3 4

0 - yes yes yes no

1 yes yes no no no

2 no no no no no

!t is essential to estimate the uppe; and lower bounds for reliable use of the gi theory. The

most important usage of the upper bound is in a computational scheme when it is combined with

the lower bound. The other important feature of the upper bound is that it can be combined with

H. control synthesis methods to yield an iterative t-synthesis method.

2.2. Linear Fractional Transformation
The dynamic system model in Figure 2-2 includes both parametric and non-parametric

uncertainties where the complex matrix M of the nominal system is partitioned as:

M [ M I  
12  (12)

LM21 M 221J

and the uncertainty block structure A is compatible in size with M2 2 . For A e A , the loop

equations are:

z=Mlld+Ml2P; w=M 2 1d+M 22 p; and p=Aw (13)

zA
M

Figure 2-2. Linear Fractional Transformation Structure

6
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D.'niion Ju The system in Figure 2-2 is well-posed if there exist unique vectors z, w, and p

such that the equation set (13) is satisfied for any exogeneous input vector d. In other words, the

system is well-posed if and only if I - M22A is invertible.

Remar.k:2: If the system in Figure 2-2 is not well-posed, then there are infinitely many solutions

to the loop equation set (13).

Qfinition 4:: If the system in Figure 2-2 is well-posed, then the linear fractional transformation
(LVT), F1 (M,A), on M induced by A eA is defined as:

Fi(M,A) = M11 + M 12 A (I -M 22A)" M21
and (14)

z = Ft(MA)d is satisfied.

Reark 3: The subscript I on Ft pertains to the "lower" loop of M being closed by A EA as

shown in Figure 2-2. An analogous formula describes Fu(M,A), which is the resulting matrix

obtained by closing the "upper" loop of M via an uncertainty matrix having z as the input and d as

the output.

RemaLr4: In the LFT formulation of eq. (14), the sub-matrix M1I represents the nominal plant

transfer matrix; A e B 3 , as defined in eq. (3), can be viewed as a norm-bounded perturbation

from an allowable set; and the sub-matrices M12 , M 21 and M2 2 provide the information of how

the parametric and non-parametric uncertainties influence M11 .

Given two defined block structures, A 1 and 42, which are compatible in size with MI and

M 22 respectively, a block structure A is generated as:

A = A 1 E 41 " 2 r A-2  (15)

Now the structured singular value pi can be computed relative to the above three block

structures, A 4 and 42 In general, the following two problems are of interest:

• Determination of whether the LFT is well posed for all A2 I 42 with U(A,) I - and

• Evaluation of a scalar measure of the transfer matrix Fj (M,, 2 ) relative to the norm-bounded

set of perturbations A2.

To solve the above two problems by calculating the structured singular values ( i), we present two

theorems ([Packard et al. (1993)1 and Balas et al. (1991)]) which form the foundation of

7
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gI-analysis and synthesis. In this respect, the. following notations are used: Pi(*) is with respect

to A., 92(.) is with respect to 42, and 91.2(.) is with respect to A as defined in eq. (15).

Theorem I (Theorem 3.4, Balas et al. (1991), p. 2-13): The LFT F,(M,A2 ) is well posed for all

A2 e BA 2 if and only if112 (M2 2 )< 1.

Theorem 2 (Theorem 3.5, Balas et al. (1991), p. 2-13): A1,2(M) < I if and only the following

two conditions hold:

" A 2 (M 22 ) < I

(17)

" Max M, (F (M,A2)) < I

A 2 E BA 2

2.3. Review of g in the Frequency Domain

The most well known use of ji as a robustness analysis tool is in the frequency domain. Let
M(s) be the nominal transfer matrix of a stable, multi-input, multi-output transfer function of a

linear time-invariant control system. Given the block structure of all perturbations which are
themselves dynamic systems having the structure of A, the problem is to determine the effects of

these perturbations on the control system. To accomplish this task, first let .E denote the set of all
real-rational, proper, stable, transfer matrices. Associated with any block structure ', let 9(4.)

denote the set of all block diagonal, stable real-rational transfer matrices, with block structure of
A4.

()=A(S)EZ. e+} (18)

Uncertainties
A(s)

Nominal System*_j

M(s)

Figure 2- 3. Linear Fractional Transformation in the Frequency Domain

TeQLM 3 (Theorem 3.6, Balas et al. (1991), p. 2-14): For fj>O, the feedback loop shown in

Figure 2-3 is well-posed and internally stable for all A E &(_) with 1I4]]K < 3-1 if and only if
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= u(M) p LA(M(jo0))<_ fP (19)

coER -(I

emarL.5:: Theorem 3 ensures that the peak value on the .-plot of the frequency response
corresponds to the perturbation whose size determines the robust stability of the loop system.

Often performance, in addition to stability of a closed-loop system, must be robust to

perturbations. Typically there are exogenous disturbances acting on the system which result in

tracking or regulating errors. Under the perturbation, the effects of these disturbances on the error

signals can significantly increase and consequently the closed-loop system performance may not be

acceptable. Therefore, a procedure for robust performance test is necessary. Such a test should

indicate the worst case performance degradation associated with a given level of perturbations. If
the transfer matrix M is stable, real-rational and proper with np4 nd inputs, and n, + n, outputs,

thcn M can be partitioned such that Mll has np inputs and nw outputs, M2 2 has Id inputs !and

n. outputs, and the remaining two submatrices of M have compatible dimensions. Let the bock

structure A I cC n - n
p of the uncertainties corresponding to the system submatrix MI1 be

augmented as follows:

{[1 A 'A 2 cCflf

The above block structure is set to address the robust perfornance of the loop shown in Figure
2-4, and the perturbed (closed loop) transfer matrix is denoted by Fu(M, A) with A(s) E (4 sys )

LTorem 4 : (Theorem 3.7, Balas et al. (1991), p. 2-16): Let /3 > 0. For all A(s) E e(Asy s ) with

h[AI, < - the loop in Figure 2-4 is well-posed, internally stable, and IIF( P,A)IL -  if and

only if

~LA(M (- ))3 (21)
coER

In general, a procedure for p-analysis and .- synthesis of a control system to assure robust

performance design procedure involves several steps:

Step 1: Specification of the closed loop feedback structure.

Step 2: Specification of the modeling uncertainty and performance objectives in terms of
freque .y-dependent weighting matrices.

Step 3: Construction of open-loop interconnection for the control synthesis routines.

Step 4: Design of the contioller for the open-loop interconnection in Step 3.

9
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Step 5: Analysis of robustness properties of the resulting closed-loop systems using the structured
singular value, known as lt-analysis.

Step 6: Identification of frequency-dependent matrices, obtained in the g-analysis step, to scale

the open loop interconnection.

Step 7: Redt.sign of the scaled H.,controller.

Step 8: Iteration, if necessary, on Steps 5, 6 and 7, known as lt-synthesis.

Uncertainties

A(s) d Disturbance

jw p p Perturbation

Nominal System u Control

SM)w Weighted control

z Performance variable

A~s)

F ud-"~sj INominal Plant

F G(s)

Feedback
- Controller

K(s)

Figure 2-4. Tra.nsfer Matrix with Perturbations

2.4. The g-Analysis:
The objective is to analyze a stabilizing controller K for all stable perturbations AG(s),

with IIIAC, < 1. The controller K must satisfy the following conditions:

" The perturbed cosed-loop system remains stable

" The perturbed weighted sensitivity transfer matrix relating z to d

S(AG) -Wp[I + G(I + AGWdeI)K -1  (22)

has liS(AtG) < I for all such perturbations.

10
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Uncertainty Models: Given the nominal plant transfer matrix G, it is necessary to specify an

uncertainty weighting matrix, Wdel, and a normalized variable transfer matrix 6 G . Both Wdel

and 1AG have to be stable transfer matrices, and there must not be any pole-zero cancellation

between Wdel, AG and G in the closed right-half plane. All of the uncertainties in modeling the

plant should be captured in the normalized, variable transfer matrix AG, which is used to

parametrize the postulated differences between the nominal model, G, and the actual behavior of
the real piant denoted by G = G(I + AGWdel) Therefore, the two transfer matrices Wdel and A G

parametrize an entire set of plants which must be appropriately controlled by the robust controller

K. The actual plant transfer matrix which includes the modeling errors and disturbances belongs to

the following set:

S{(6(1 + AGWdet):AG stable, IIAGII -5 1) (23)

Tbk" ,erfo-mancc (,f the closed loop nominal system is evaluated using the sensitivity matrix,

(I + GK) - 1 between the disturbance d and the performance variable z in Figure 2-4. The objective

is to c- trze good performance in terms of a weighted H. -norm on this transfer matrix.

Given a stable, real-rational transfer matrix Wp, the nominal performance is achieved if

1 Wp(I +GK)-I < 1. Similar to the uncertainty model where the frequency-dependent

weighting functionWdel normalizes the specifications AG for plant modeling unct ,-taintics, the

frequency-dependent weighting function Wp is used to normalize the performance ,uch that the

norm of the weighted sensitivity matrix is less than 1.

To analyze the controller of a given plant which is subjected to uncertainties, four different

criteria need to be tested as explained below:

- Nominal Stability: The control system with the nominal plant in the loop is internally stable.

That is, there are no pole-zero cancellations in the closed right-half s-plane, and the poles of

the closed-loop system transfer matrix must lie in the open left-half s-plane.

- Nominal Performance: The performance objective is satisfied for the nominal plant model if:

iW p(l + e;K) - I L < I (24)

- Robust Stability: The closed loop system between the perturbation p and the uncertainty

weighted control w =Wdel u is interaldily stable for all possible plant models G c Y., i.e.,

11
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11Wd1KG(I + K6r' 1 <1 (25)

Robust Performance: The closed-loop system is internally stable for all G E I and, in

addition, the performance objective is

iWp (I +GKY_' 1 <1 VG E (26)

Rma : Referring to Figure 2-4, nominal performance can be equivalently expressed as:

IM221L. < 1 (27)

and robust stability as:

tI(M]),L < 1. (28)

The following are the conditions of robust stability and performance:
Max

I[l (MI )b <1 and ax PBA_112 (Fu(MA))L < (29)

which, by Theorem 2, are equivalent to

<1, (M)I0< (30)

2.5. The 4-Synthesis

It follows from the V analysis that the inequality P1,2 (M) <_-?(DMD- 1) holds for any

diagonal matrix D with a block structure matching that of A = diag(A1 ,. . , An ). In the p-synthesis
procedure [Packard and Doyle (1993)], the strategy is to pick stable diagonal transfer matrices D(s)
with stable inverses, then to use H,. synthesis to compute the controller K which minimizes

llDF,(,K)D'L. The D -matrices may be either constants, with no state dynamics, or

frequency dependent. The latter case would obviously increase the number of states in the

synthesized controller K, and thereby add their states to those of the closed loop control system.

The p-synthesis procedure can be executed, after the initial con' Al.er design, as a two-phase
iterative process called the D-K iteration [Packard et al. (1993)] whic'i is summarized below:

12
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Phase 0: Design a controller K(s) based on a given nominal plant transfer matrix (which may

include the performance and stability weighting functions) such that the closed loop

system is internally stable and satisfies the criteria of performance specification._

Phase 1: Execute the t-analysis procedure using the closed loop system. If the robustness

requirement is not satisfactory, then pick a diagonal [(s) so that D(s) and D-(s) are

stable, and the upper bound -u(DF(G,K)D- 1) is approximately minimized over the

frequency range of interest.

Phase 2: Execute H,, synthesis to identify a controller K(s) which minimizes the norm

IIDF(G,K)D-I10 of the scaled system. Go back to Phase 1 and repeat the iterative

procedure until the desired condition of A11,2(Fe(G,K)) < I is achieved over the

frequency range of interest or no further reduction in p. is possible.

13
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3. A SIMULATION EXAMPLE

The (continuous-time) flight dynamic model [Safonov et al. (1981)] of an advanced aircraft,

linearized at die operating condition of 7.62 kilometers and 0.9 Mach, was selected to illustrate the

4. analysis and g-synthesis procedures. The plant matrices are given below.E--0.0226 -36.6170 -18.8970 -32.0900 3.2509 -0.7626

0.0001 -1.8997 0.9831 -0.0007 -0.1708 -0.0050

0.0123 11.7200 -2.6316 0.0009 -31.6040 22.3960
A =

0 0 1.000 0 0 0

0 0 0 0 -30.0000 0
L 0 0 0 0 0 -30.0000j

00[ o 30]' C [0 1000 0]
B= 0 0 0 30 C

The six plant state variables are forward speed, angle of attack, pitch rate, attitude angle, elevon

actuator position, and canard actuator position; the two control inputs are elevon and canard

signals; and the two output variables are angle of attack and attitude angle. The open loop plant

poles are given in the Table 3-1.. Therefore, the nominal plant is unstable in the open loop with a
pair of complex eigenvalues in the right-half s-plane.

Table 3-1. Plant open-loop poles

Open-loop poles of the plant

-5.6754
6.9002e- 1 +2.48e- I i
6,9002e- 1 -2.48e- 1 i
-2.5794e- 1
-3e+l
-3e+I

A diagram of the closed-loop system, which includes the feedback structure of the plant and

the controller, and ciements associated with the uncertainty models and performance objectives, is

shown in Figure 3-1.

The dashed box represents the actual plant, with associated transfer function G. Inside the
box is the nominal model of the airplane dynamics, 6, and two elements, Wdel and AG, which

represent the uncertainties in the plant model. The frequency weighting function WdeI is assumed

14
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to be known and reflects the amount of uncertainty in the model. The transfer matrix AG is

assumed to be stable and unknown, except for the nomi condition, lAGII < I. The performance

objective is that the transfer matrix from d to z be small, in the I11 sense, for all possible

uncertainty transfer matrices AG. The weighting function WVP reflects the relative importance of

various frequency ranges for which the performance is desired.

Perturbed
G Plant G d1

L._ Nominal

Lientrolant | -
GIs Iz

K(s) ]

Figurc 3-1. Closed-Loop System of the Aircraft Control with Uncertainties

The control objective is to identif, a stabilizing controller K such that for all stable

perturbations AG(S), with IIAGI < 1, the perturbed closed-loop system remains stab!e, and the

perturbed weighted sensitivity transfer matrix,

S(AG) - Wp(I + G(I + AGWdel)K) - 1

has IIS(AG)I < 1. It follows from Section 2 that these objective functions are compatible to the

structured singular value framework.

To formulate the problem into the framework of p-analysis, we augment the perturbed plant

as the open-loop system structure of p-block shown in Figure 3-2.

At the initial stage, we used three conventional algorithms for multivaiable control systems

synthesis, namely, LQG, H2, and H.. Our intention was to compare the robustness of these three

controllers under the same structure and bound of uncertainty blocks and disturbance blocks, and

then formulate a strategy for quantitative evaluation of robust stability and performance. The results

are summarized below.
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weighted
control w perturbation disturbance

P d

Wdel performanceNominal variable
Plant z

conLrol
u error ignai

I 
e

perturbation p t4, weighted control w

disturbance d p-block p performance variable z

control u error signal e

Figure 3-2. Augmented Open-Loop System

3.1. The LQG Controller

In the LQG synthesis, it is well known that the nominal closed-loop system is stable when

controlled by the LQG compensato:. The closed-loop poles of the nominal system are given in
Table 3-2 for the state weighting matrix Qc=CTC; control weighting matrix Rc=12: plant noise

covariance matrix Qf.=BBT; and measurement noise covariance matrix Rf=-10 -3 12. As the nominal

plant model was augmented with the modeling uncertainty blocks, the resulting closed loop system

under LQG control became unstable. The closed loop poles are shown in Table 3-3. This

instability results from the uncertainties imposed on the nominal plant. In that case, the loop

transfer matrix from perturbation p to weighted control w in Figure 3-2 (after closing the loop with

the LQG compensator) is:

w = K(s)(I -G(s)K(s))-16(s)p

The LQG system does not guarantee that the closed-loop system will remain stable in the presence

of uncertaintes and disturbances [Doyle (1978)1 although LQR guarantees a gain margin of (2 -,)
2

and phase margin of (-600,+6 00). In this particular case, the output becomes easily unbounded

because G(s) is unstable in the open loop.

16
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Table 3-2. Closed-loop poles by Table 3-3. Closed -loop poles by

LQO Design with by LQG Design witi

Exact Parameters Uncertain Parameters

Closed-loop poles by LQG design Closed-loop poles

A( A-BE) X( A - LC) of augmented structure

-21.444+37 .699i
-5.8348+4.4879i -20.199+28.714i -21.444+37.6991
-5.8348-4.4879i -20.199-28.714i -5.285e+1
-1.3878 -4.2003e+ I 7.34(9
-3.0056e+1 -2.1404e-2 -6.3281

-3.00e+1 -2.6961 -2.7026

-2.9910e+l -2.9909e+1

-3.00e+l
-8.27 1 e- I
-2.9987e+1
7.0703e-3
-2.1401 e-2

3.2. 12 and H. Controller Analysis Using IL

Two controllers were synthesized via H, and H. norm optimization to stabilizt the

a,.gmented open-loop structure in Figure 3-2. Based on the plant model and the desired
performance of the closed loop control system, the respective weighting matrices, Wde and Wp

for uncertainty and performance were chosen to be:

s+3 0 0

Wde s+0 s+3 nd Wp= s+0.03 1
s+300-L s+0.03

These two controllers were compared using the -analysis criteria described in Section 2. The

selected set, SD, of frequency points at which the control systems were analyzed and synthesized

consists of ,f = 60 points logarithmically equally spaced between the decades of 10.- to 10 . The

results for three different cases are shown in Tables 3-4, 3-5, and 3-6, respectively. The

unccrtai;ity and the exiernal disturbant-es in Case I are represented by two full blocks, i.e.,
. I C C 2 , and 42 c C2 . This implies that the uncertain parameters in the plant could be

perturbed arbitrarily in any form within a given bound. The parametcr perturbation in the designed
compensator is analogous to the concept of gain margin and phase margin in the SISO systems.

As seen in Table 3-4, both H, and H_ controller, do not show good nominal and robust

17
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performance (IIM221I. and max u(M(woj)) are larger than 1) aithough the H- controller is superior

to the t12 controller from these perspectives. However, the stability robustness is good for both
controllers because max Ai(MJJ((oi)) is smaller than 1 foreach.

Table 3-4. Comparison of the controllers (Case I)

_5 _C.C
2X 2  A2 c_ 2x2

Controller nominal robust statibiliity robust performance
Algorithm performance

1M 221, max U (Mll(t o)) IPl- max P(M(O)) Ij AL,

Hi, 2.5968 0.3237 3.0893 2.78343593

H I.5154 .3234 3.091 !.8184 0.549

Table 3-5. Comparison of the controllers (Case II)

S(I=1 2 :C cC2 2  2 cC 2x 2

Controller nominal robust statibiliity robust performance
Algorithm performance

IM221- max U(M.j((OI)) la&. max p (M (wi) IALai

H2  2.5968 0.3233 3.0936 2.6894 0.3718

1.5154 0.3222 .10.5 1.6106 0.6209

Table 3-6. Comparison of the controllers (Case II1)

, = [diag[b , -b2 1: 1 .5 2 c C 2 x . }) 42 c C 2x 2

Controller nominal robust statibiliity robust performance
Algorithm performance

IM21- max U(Mjj(&j)) IAL max P(M((o,)) 1AL-

upper: upper:
H2 2.5968 0.3236 3.0904 2.8917 0.3594lower: lower:

0.3236 2.7822
upper: upper:

H 1.5154 0.3233 3.0929 1.8896 0.5525
lower: lower:
0.3233 1.8098
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Next, for Case II and Case III, the block AI was allowed to have two different structures
while the full block structure of A2 is unaltered. This can be interpreted as the plant uncertainty

structure is changed but the external disturbances and the performance requirements remains
unchanged. In Case II, it was assumed that Al = {12:8 e C). This means that the uncertain

parameters are only uniformly perturbed diagonally. In Case III A = (513 2 E C}

implies that the uncertain parameters are independently perturbed.

All three cases of p-analysis in Tables 3-4, 3-5 and 3-6 show that both H2 and H-
controllers possess reasonably good robust stability but not good nominal and robust performance.
However, the H- controller has a better nominal and robust performance. On the other hand, the
robust performance of the H_ controller is sensitive to the uncerainty structure change, and

apparently its robust performance should improve if the parameters are perturbed uniformly and

diagonally.

The p-analysis package [Balas et al. (1991)] is capable of calculating the upper and lower
bounds of pt. As mentioned in Section 2, the lower bound p. is not exact although theoretically an
equivalencc exists. The upper bound of the exact L can be reached for only some specified
uncertainty structures as seen in Table 2-1. The upper bounds of the numericaliy computed l.
match the exact value of pi for AI E C2x 2 and d =612:8 E C) in Tables 3-4 and 3-5,

respectively. Howev( r, neither the upper bound nor the lower bound is guaranteed to match theIT80 01
exact value of p as seen in Table 3-6 because for ]13 EC

0 152

3.3. p-Synthesis and D-K Iteration

The 142 optimization provides a unique controller while H- optimization uses an iterative
procedure to obtain an approximate solution [Doyle et al. (1989)]. The p-analysis could be used to
guide the iterative process of H. optimization, and this process is called the D-K iteration I Packard
et al. (1993)]. As described in Section 2.5, any linear time-invariant finite-dimensional stabilizing
controller can be used to initiate the D-K iteration. However, in the subsequent steps of D-K
iteration, only H synthesis has been used to update the controller, and p-analysis is used to

evaluate the designed controller at each iteration. In the example of this report, the controller was
initially designed via H- optimization and, after two passes of D-K iteration, the updated controller

exhibited significantly superior robustness properties. In each of the two passes, a 4th order

polynomial fit was chosen for the scaling matrix D(s). The results are summarized below in Tablc
3-7.

10
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Table 3-7. Comparison of the initial and final controllers given by D-K iteration

Z1 cC 2 x 2  42 c C 2 x 2

D-K nominal robust statibiliity robust performance
performance

iteration 1M2 2 L. max uI(Mll(W~)) IIIL max U(M((Oi) )  HAL
number 1_____l__i___

initial 1.5154 0.3234 _ 9 1.8184 0.5499

1 0.9157 0.1933 5.1742 1.0175 0.9828

fina- 0.6573 0.1592 6.2800 0.7509 1.3317
2 1 1

Table 3-7 shows that robust stability of the final controller is significantly enhanced since
maxit(M1 (cto,)) is much smaller than 1. The nominal performance and robust performance are

also significantly improved since both IM22 L and maxp(M(oj)) are made less than 1 in final

version of the control system synthesis.

The perturbation data obtained from the initial contruollci analysis were used to build thc
transfer matrix AG (S). If the perturbation data obtained from the final controller analysis is used,

the control loop closed by the initial controller may become unstable. The rationale is that the final
controller has better stability robustness than the initial one so that lAG (sA. of the final controller

is greater than that of the initial controller.

Figures 3-3 and 3-4 show the frequency domain simulation of the initial H. controller and

final H. 0 controller, respectively, to compare their robust performance and stability. The plant

transfer matrix is G(s) = G(s)(I + AG(S)Wdel(S) ] , where AG(S) is a stable, real-rational transfer

matrix constructed according to the uncertainty perturbations obtain, d from the it-analysis data.

Since "6(AG(S)) = (II(Ml(.)))- 1  Vs c SD where SD is the selected set of frequency points

for numerical computation of i, the closed-loop system has the worst case perturbations among

the set of actual plant transfer matrices.

Figures 3-3 and 3-4 compare the singular values of the nominal loop transfer matrices and

nominal sensitivity matrices, respectively. The loop with the final controller has better

performance than that with the initial controller because the minimal singular values of the loop

transfer matrices of the final controller is higher at the low frequency range. Another interesting

point is that the range of singular values from maximum to minimum is much larger for the final
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controller than that for the initial controller. It is important to note that the conventional robust

performance rule is very conservative under the assumption that all the singular values at the low
frequency range must be high. However, since the final controller is constructed based on the .

theory, it is much less conservative than a controller synthesized via the conventional techniques.

So the robustness constraints are relaxed and each singular value can be varied within a large ringe

while the performance of the final controller as shown in Figure 3-3 is still higher. On the other

hand, the maximum singular value of the loop transfer matrix of the final controller is higher than

that of the initial controller. But the robust stability of the final controller, as shown in Table 3-7, is
better than that of the initial controller. This is doe to the same reason that t.-theory is much less

conservative so that the stability bound for the nominal plant can be relaxed while keeping the

stability robustness high. The example given in this report shows the difference between the
nominal stability and robust stability, and the difference between the nominal performance and

robust performance. For multivariable system controller analysis and synthesis, we should lot

only consider the nominal stability and performance but also the robust stability and performance.

However, the benefit of the robustness is gain.,d at the expense of an increased order of the

controller in the D-K iteration. For real time implementation, a reduction of the controilel model

order IBalas et al. (1991)] might be necessary.
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3.4. The Control Analysis And Synthesis Procedure Using j.

Procedures for numerical computations in pi-analysis and ji-synthesis are discussed in view

of the analytical results of Section 2 and the simulation results of Section 3. Given a nominal
plant, the perturbed parameter and uncertainty structure, the design specifications, and a set of

MIMO controllers (that are already designed), the following procedural rules are presented for
analysis and comparison of these controllers in view of their nominal and robust stability arid

performance.

Step 1: Break the loop at selected points according to the uncertainty structure and perturbed

parameters;

Step 2: Select the weighting functions for stability and performance according to the design

specifications and knowledge of the uncertainty structures;

Step 3: Build the augmented open-loop system structure which includes the nominal plant, and the

weighting functions;

Step 4: Use each of the designed controllers to close the loop and construct the augmented M-block

for gI-analysis;

Step 5: Check whether each poie of the M-block is located in the left half s-plane. Choosc those

controllers that are stable.

Step 6: Use the g-analysis program (MU-ANLY.M described in Section 4) to compare II1M221L.
for each design and choose those controllers that most closely satisfy the nominal

performance requirements.

Step 7: Compare Itu(MIi 1, for each design and choose those controllers that most closely satisfy

the robust stability.

Step 8: If the robust performance is the major concern of the design objective, then Ilp(M)jj of the

candidate controllers should be compared first. Otherwise, use different uncertaui.,

structures and repeat pI-analysis to verify if the robust stability of the controller is sensitive
to a change in the uncertainty structure. Choose those controllers that most closely ',atisfy

the robust performance or are relatively less sensitive to changes in the uncertainty

structure.

Step 9: Conduct a time domain simulation on the controllers that have passed the above tests for the
actual closed-loop system structure under the worst case perturbations. Select those

controllers which provide a good performance of the closed-loop system.
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4. DESCRIPTION OF THE COMPUTER CODE

A number of programs are written in the MATLAB environment [Moler et al. (1987); Balas

et al. (1991)] for robustness analysis with any multivariable plant model and uncertainty blocks.

The program MU _EXAMP.M demonstrates the usage of the above programs by analyzing the

flight control system of an advanced aircraft. discussed in Chapter 3 and following the program

structure shown in Figure 4-1. However, to use these programs in the specific It-analysis and It-

synthesis problem, the user should write his or her own program.

MUINIT.M

This program creates an interconnection structure of a given open loop system. It must be run

before any controller design and pI-anaysis.

Input: A, B, C, D - nominal p!ant state space matrices.

Gdel - gain of uncertainty weighting function.

Gp - gain of performance weighting function.

Output: Wdel - uncertainty weighting function.

WI - pcrformancc weighting function.

p-block - interconnected structure of the open loop system.

Since the interconnection structure is specific for each individual system, the program written

inside MUINiT.M should be changed in each case. The user should know how to build the

interconnection structures using the MATLAB function "sysic" [Balas et al. (1991)]. Figure 4-2

gives the interconnection structure used in the example given in Chapter 3. Three different

methods, namely, LQG, H2 and H, for the initial step of controller design are provided in the

programs called MULQG.M, MU_II2.M anid MU_HINF.M, iespectively.
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MU_LQG.M

This program carries out LQG controller design. It can be used as the initial step of the Pt-

synthesis.

Input: A, B, C, D - plant state space matrices

Qc, Rc - weighting matrices for LQR design

Qf, Rf - plant disturbance and measurement error covariance, respectively

Output: F - controller gain

L- observer gain

k_comp - compensator structure

M-plant - closed-loop system structure as shown in Figure 4-2.

M.plaait

Figure 4-2. The Closed-Loop System M-plant.

MUH2.M

This program carries out H2 controller design. It can be used as the initial step for 1-
synthesis.

Input: p-block - open-loop system structure

Output: kcomp - compensator structure

Mplant - closed-loop system structure
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MUHINF.M

This program does Ho controller design. It can be used as the initial step for si-synthesis.

Input: pblock - open-loop system structure

Output: kcomp - compensator structure

M-plant - closed-loop system structure

The next step after controller design and evaluation is g-analysis as seen in the flow chart of
Figure 4-1.

A1

Figure 4-3. The Structure Used in the ui-analysis

MUANLY.M

This program carries out p-analysis.

Input: M-plant - closed-loop system structure

blkI - block structure of Al as shown in Figure 4-3.

blk2 - block structure of A2 as shown in Figure 4-3.

blk - block structure of A = A,

L 0 A2 1

Output: frequency domain plot of i(M 22 ), and IM22L as the measure of nominal performance.

frequency domain plot of .i(M 11), max(p.(M 1l)), and IIA1II as the measure of robust
stability

frequency domain plot of p(M), max(p.(M)), and lAIIA as the measure of robust
performance.

At this stage the user may choose to further improve the controller via the D-K algorithm of t-
synthesis or directly examine the performance of controller via time-domain simulation.
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Note: When typing the input of blkl, blk2, and blk from the keyboard, it is required to use the
same format as prescribed in [ Balas et al. (1991) pp. 4-701.

MUDK.M

This program dose D-K iteration as a part of pt-synthesis.

Input: p-block -original open-loop system structure

rpdvec - I matrices obtained by p.-analysis

rpsens - sensitivity function of Ii(.) obtained by 4I-analysis

bik - block structure of A = A

L 0 A,)

Output: k-comp - compensator structure with increased order during the iteration. This is
designed according to the new open loop system structure shown in Figure 4-4.

M plant - closed-loop system structure with increased order during the iteration.

SD(s) p-block D (s)

new

Figure 4-4. Augmention via D-Matrices in the D-K Iteration
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MU_SIMU.M

This program does time domain simulation of the closed loop system with the worst perturbation

as a stable transfer matrix.

Input: M-plantl - closed-loop system structure of the initial design

in-pvec - perturbations of the initial design obtained from p-analysis

inbnds - upper and lower t bounds of the initial design obtained from It-analysis

M-plant2 - closed-loop system structure of the final design

fin-pvec - perturbations of the final design obtained from pt-analysis

fin_bnds - upper and lower gr bounds of the final design obtained from gI-analysis

n_block - number of blocks to be approximated by transfer matrix

bik - block structure of A = i 1

Output: M-pert I - closed-loop system structure of the initial design with the worst perturbation as

shown in Figure 4-5.

M-pe_,.2 - closed-loop system structure of the final design with the worst perturbation

u - time domain input signal

y I - output signal of the initial design

y2 - output signal of the final design

A (s)

w M_pert (s)

w p

----------------- 4

Figure 4-5. Closed-Loop System with the Worst-Case Perturbation

29



NAWCADWAR-93010-60

MUI.FRQ.M

This program plots singular values of loop transfer matrices and sensitivity matrices for a

closed-loop system.

Input: ap,bp,cp,dp - plant state space matrices

ak,bk,ck,dk - compensator state space matrices

ak2,bk2,ck2,dk2 - second compensator state space matrices

n_comp - number of closed-loop systems. If nscomp=1, then only one loop is plotted; if
n_comp =2, then two loop functions a'e plotted in one graph.

Output: sxl - singular values of the loop transfer matrices

syl - singular values of the loop sensitivity matrices

sx2 - singular values of the second loop transfer matrices, if n-comp=2

syl - singular values of the loop sensitivity matrices, if n-comp=2
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5. SUMMARY AND CONCLUSIONS

This report presents the results of control systems analysis and their applications to control

systems synthesis for high performance aircraft, and provides a proven, tractable and portable
methodology to quantify the stability margins and robustness of highly integrated digital fly-by-
wire control systems. The H.-based gI-analysis approach has been recommended for

quantitative evaluation of robust stability and performance of multi-input multi-output (MIMO)

control systems. This approach for control systems evaluation offers an alternative to the notions

of conventional gain margin and phase margin.

A survey of recent literature has shown three major different approaches to quantitatively

evaluate the robust stability and performance of MIMO control systems. The first approach relies
on the structured singular value (pt) and H.-analy;es in the framework of Linear Fractional

Transformations (LFF) of MIMO systems that are subjected to uncertainties with known bounds.

The seco:,d approach generalizes the definition and calculation of gain and phase margins for
MIMO systc.ns anaiogous to those fcr single-input, single-output (SISO) systems. The third

approac' examines the relationships between the open loop gain and phase with respect to closed
. - .itivity and complementary sensitivity functions for SISO systems, and then formulates

heu:istic rules for shaping the loop transfer functions for MIMO systems. The first approach of l.t-
analysis for robustness assessment of MIMO systems constitutes the main body of this report

because it has significant advantages over the remaining two approaches as discussed below.

The second approach attempt. to generalize the conventional concepts and computation
algorithms of gain margin and phase margin for MIMO systems. The concepts of gain margin and

phase margin were initially based on gain parameter perturbations of a given controller for SISO
closed-loop systems. The algorithm, generalized for MIMO systems in the second approach, can

only deal with parameter variations of a constant gain matrix. Since a MIMO plant is generally
represented by a stabilizable, real-rational transfer matrix, the system gain margin is not uniquely

defined. Therefore, analysis of MIMO control systems based on gain margin and phase margin is

not a straight-forward extrapolation of that of SI5O systems. In contrast, the concept of structured
singular value (p) deals with all types of bounded parametric aiid non-parametric uncertainties.

Apparently g-analysis appears to be much more general than any of the reported algorithms for
gain margin and phase margin evaluation. The 1..-analysis can handle not only the parameter
variations in the dynamic controller K(s) but also the uncertainties in the plant model and

parameter perturbations anywhere in the loop. To summarize, L-anaiysis is capable of quantifying

the stability and robu',tness of the closed-loop system under any destabilizing factor. Furthermore,

the algorithms in the second approach are relatively more conservative because singular values of
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the transfer matrices are often used as the norm to bound the perturbations, and the parameters are

only allowed to vary diagonally. In contrast, g-analysis does not suffer from these problems

because the notion of structured singular value is directly based on the Nyquist stability theorem.

Although the third approach which is based o-7 loop transfer matrices is more general than the
second approach for MIMO control systems, it only provides a qualitative description of the
stability and performance of closed-loop systems. Apparently, quantitative analysis of stability and
perforr -ice can be reliably carried out by the algorithms based on pt. Therefore, pt-analysis is
conside .l to be. the most effective tool for control systems evaluation as reported in open
literature.

Results of simulation experiments using the flight dynamic model of an advanced aircraft
have been presented to demonstrate how the nominal and robust stability and performance can be

evaluated via si-analysis. Furthermore, it is shown that both stability and robustness can be
improved using the tools of p-synthesis. A software package has been developed in the
environment of MATLAB for analyzing robustness of MIMO control systems. This package is
built upon the commercially available pt-Analysis and Synthesis Toolbox [Balas et al. (1991)].
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APPENDIX A
THE PRINCIPLE OF MULTIVARIABLE NYQUIST STABILITY CRITERION

Let N(A,f(s),C) denote the number of clockwise encirclements of the point A in the

complex plane by the image of the clockwise contour C under the mapping f(s). Using this

notation, the principle of the argument can be written as:

N(O,f(s),C) = Z - P

where Z is the number of zeros off(s) inside C, and P is the number of poles off(s) inside C.

Suppose f(s) = fI(s)f 2 (s) and there are no pole-zero cancellations between fI(s) and
f 2 (s) Then, the Nyquist stability criterion is stated as follows:

N(O, fI(s)f 2 (s),C) = N(, fI(s),C) + N(O,f 2 (s),C)

rouf th Nyouist Stability Criterions

Let the contour DR enclose right half plane. The closed loop system is stable if and only if

N(O, 0c (s),DR) = 0

Therefore, N(O,(P 0 (s)der(! +G(s)),DR) = N(0,0o1(S),DR)+ N(O,det(I + G(s)),DR) =0.

Let Pu,0 denote the number of unstable open-loop poles of G(s). Then

N(0,(o 1(S), DR) = Pu,o1 and N(0,det(l + G(s)),DR) = -PUo

R(s) + E(s) ]Ys

-- ) . G(s)

Figure A-I. Multivariable Feedback System

Given the plant in Figure A-I, the relationship between the open loop and closed loop

characteristic polynomials is as follows [Desoer et al. (1977)]:
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cI = 0o delI + G(s)] (A-I)

or OcI = dells! - AcI I (A-2)

where 00, = det/sl -A] is the open loop characteristic polynomial, A and Acl are the system

matrices of the open loop system, G(s), and the closed loop system, G(s)[I + G(s)] - 1,

respectively.

The Nyquist stability criterion states that the closed-loop system is stable if and only if the

number of counter-clockwise encirclements of the origin by the image of the clockwise Nyquist
contour DR under the mapping det(J + G(s)) equals the number of unstable open-loop poles of the

open-loop transfer matrix G(s). The proof of this criterion is based on the theory of complex

analysis as outlined earlier in this Appendix. Several researchers [Yeh et al. (1985a), Molander and

Willems (1980), Tao et al. (1991), Lehtomaki et al. (1981)] have attempted to extend the concepts

of gain and phase margins of SISO systems to address the stability robustness of MIMO systems.
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APPENDIX B

APPROACH 2: MULTIVARIABLE GAIN MARGIN AND PHASE MARGIN

Now we introduce the pertinent definitions and some of the useful algorithms for the afore-

mentioned two approaches of robustness assessment.

Some diversity and ambiguity exist in defining the MIMO gain and phase margins. The

common practice of one-loop-at-a-time stability margins fails to account for the simultaneous

variations in MIMO feedback systems and hence may not be acceptable as relative stability

measures. The norm-bounded robustness criteria guarantee closed-loop stability but they do riot

explain how the individual elements of the control gain matrix may be varied without destabilizing

the closed-loop system. To this effect, Yeh et al (1985a) introduced two different definitions of

stability margins.

Definition B-1: independent gain margins are limits within which the gains of all feedback loops

may be varied simultaneously and independently without destabilizing the system whilz the phase

angles remain at their nominal values. Independent phase margins are limits within vhic h the phase

angles of all feedback loops may be varied simultaneously and independently without destabilizing

the system while the gains of all feedback loops remain at their nominal values. However, these

stability margins, if computed via the singular-value based robust stability criteria, tend to be very

conservative.

Definition B-2: Uniform gain margins are limits within which the gains of all feedback loops

may be varied uniformly without destabilizing the feedback system while the phase angles remain

at their non-inal values. Uniform phase margins are limits within which the phase angles of all

feedback loops may be varied uniformly without destabilizing the system while the gains remain at

their nominal values.

Remark:: A major difference between MIMO and SISO systems is that the stability margins of

MIMO systems vary relative to the point where the complex loop gains are measured. For a general

feedback system, if the gain perturbations are calculated at input of the plant, then the simultaneous

perturbation in each loop may be represented by a diagonal perturbation matrix Ls) preceding the

plant G(s).

For independent margins: L(jw) = diag[bl((O)eiql w), b2(oW)eiq2((0).... bne :qj , ( (] (B-I)

For uniform margins: L(jo)) = l(w)ejO(W)I (B-2)
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There are several different ways to calculate the stability margins [Yeh et al. (1985a),
Molander and Willems (1980), Tao et at. (1991)]. However, we discuss the following three

algorithms in this report.

Robustness Bound Fgr.PeIrlii..rrg.: [Yeh et al. (1983a)]

Let G(s) and 6(s) represent the nominal and perturbed open-loop transfer matrices,

respectively, and the multiplicative and inverse multiplicative perturbations are given as follows:

E(s) -, [(3(s) -G(s)]G-'(s) for multiplicative perturbations (B-3)
[[ -'(s) - G- 1(s)]G(s) for inverse multiplicative perturbations

In eqs. (B-I) and (B-2), the gain and phase perturbations L(s) = E(s) + 1. The singular value

based robustness tests are given as follows [Lehtomaki et al. (1981)]:

o[L- 11 < _7-1 + for multiplicative perturbation, and (B-4)

11- 1] < a < [l + G], a 5 1 for inverse multiplicative perturbation. (B-5)

It has been shown [Yeh et al. (1985b)] by using the inverse Nyquist criterion and the Nyquist

criterion that the robustness tests for (B-3) are:

max AL. - <min[ ; [I+G-]1 for multiplicative perturbation. and (B-6)

- <5 miui[l + G a, _ a <) l

for inverse multiplicative perturbation. (B-7)

The independent gain margin (IGM) is obtained by substituting (B-2) into (B-4) and then letting

thephase angles 01 =62 =...= On O, and aI I +G - ]

I -a, < V(ro) < 1+ al Vi (B-8)

Letting the gains 01 = 02 ='"= fin = 1, the independent phase margin (IPM) is obtained as:

-2sin- 1 (al/2) < i(co) <2sin-1(a,/2) Vi, a, "-2 (B- 9)

and - < 0i(w) < lr Vi, a, > 2 (B-l16)
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Similarly, substituting (B-3) into (B-5) and the !GM and IPM for inverse multiplicative

perturbations are obtained as:
1 < A(Co) < -- Vi where a, = o[I + GJ, and

I + a 1  I - a, (B-11)

and -2sin-'(al/2) < Oi(w) < 2sin-'(a/2) Vi (B-12)

Substituting (B-3) into (B-6) and (B-7), the uniform gain margin (UGM) and uniform phase
margin (UPM) can be obtained as:

rainir + -]
For multiplicative perturbation: a0 = Gi 11 under the following constraints:

I - a0 < 1(o)) < 1 + a0  (B- 13)

-2sin-1(ao/2) < 9(co) < 2sin-I(ao/2) a0 !5 2 (B-14)

-r < 0(() < 7r a0 > 2 (B-15)

For inverse multiplicative perturbation: a0 = i'I + G4 under the following constraints:

I 1

1+ ao 1 - a0  (B- 16)

-2sin-l(ao12) < 0(o)) < 2sin-l(o12) (13-17)

The advantages of using this algorithm to calculate MIMO gain margins and phase margins are that

ielatively simple formulae can be derived from the robustness bound concepts. Although the

independent gain and phase margins are rather conservatively based on singular values, the

combined use of IGM, IPM, UGM and UPM yi.lds a less conservative estimate of the stability
perturbing region in the gain space and phase space [Yeh et al. (1984)]. However, the major

disadvantage is that these perturbations are only constrained at diagonal elements of the

perturbation matrix There is apparently no discussion about the off-diagonal terms.

Pertur __.With Nonlinear Cone Bound' (Molander and Willems (1980)]

For MIMO linear-quadratic regulators, there is Kalman's inequality which implies that this

kind of controllers possess a 600 phase margin, infinite gain margin, and 50 percent gain reduction

tolerance [Safonov and Athans (1977)1. Using this result, Molander and Willems (1980)
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developed a procedure for synthesizing state feedback control of multivariable systems with
specified gain and phase margins. Considering the linear time-invariant finite-dimensional systems:

5i = Ax + Bu (B-18)

with x E R', u E Rm , and the pair (A, B) being controllable, and the desired input being given by

the linear time-invariant state feedback control law:

u = -LTx (B- 19)
The above equation (B-19) is called a robust control law with robustness sector (KI,K 2 ) with

K,, 1 K2  _ , if the closed-loop system is globally asymptotically stable. The sector

condition is illustrated in Figure B-I for the single-input case. The control input is given by

u =f(LTx,t) (B-20)

with f: R x R -- Rm being any nonlinear function satisfying the following condition:

sup (f( a,t) - Kl)T (f(a,t) - K2a) <0 (B-21)
cr, t

Or, equivalently, supIf (a,t) - 1/2(K + I2) (K2--t) (B-22)O , t IO l

K2 0
f(G t)

f a,

K I

Figure B-1. An Illustration of the Sector Condition
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The robustness requirements also allow for an interpretation in terms of gain and phase

margins and gain reduction tolerance (defined below). The control law (B-19) has a gain margin g

(g> 1) if the closed-loop system is globally asymptotically stable for all control laws:

u = -ALTx (B-23)

where A is any symmetric matrix with eigenvalues 1 < Ai < g, The system is said to have a phase

margin 0 (0 _ , <r) if it is globally asymptotically stable for all control laws (B-23) with A

being any unitary matrix possessing eigenvalues Ai = exp(j ip) with 1I ,5 0. It is said to have a

gain reduction tolerance p if it is globally asymptotically stable for all control laws (B-23) with A
any symmetric matrix with eigenvalues (1 -p) .5 i -" 1. The relationship between robustness

sector (KI,K 2 ) and the gain and phase margins are:

g = K2  (B-24)

p = (1 - KI) x 100 (B-25)

cosW -=K K2 -+ 1

K, + K2 (B-26)

Using the multivariable control system stability theory, a methodology has been developed

[Molander and Willems (1980)] to synthesize the linear quadratic control law under prescribed gain

and phase margins. A similar synthesis procedure has been developed for the discrete-time state

feedback control law by [Lee and Lee (1986)].

The advantages of the above control algorithm are that the synthesis is based on the

framework of the general state feedback control law, which can be directly obtained with a given

robustness sector by solving the matrix Riccati equation. The major disadvantage of this algorithm

is that it is apparently restricted to the full-state feedback control case and does not address the

general compensator structures.

Unity-Feedback Multivariable Control System [Tao et al. (1991)]

In this method, the boundaries of gain and phase margins of multivariable control systems

are obtained by decomposition into augmented open-loop transfer functions. Trien the characteristic

equations are formulated and the stability margins are tested. Consider the multivariable feedback

control systems shown in Figure B-2.
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R(s) -1 Y(s)

G(s)=N(s)D (s)

R(c)=trl(s) r2(s) ... rM(s)] 1

Y(s)=[y (s) Y (s)J T

r ()Ni(s) yi(s

Di(s)

go (,)I

i=1,2....m.

Figure B-2. Multivariable System Represented by Augmented Open-Loop Transfer Function

The proper transfer function G(s) is:

GI G12  ... Gli ... Glm

G21 G22  G2i G2m

G(s) == N(s)D-(s)
Gil Gi2  ... ii m

Gm Gm2  ... G.,n ... Gmn (B-27)

where the relatively coprime polynomial matrices, N(s) and D(s), are expressed as:
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n, I n12 nil hm

n2l n22 n2i n2r

N(s)=
nil ni2 .. nil hi,

nml nm2 .nmi nmn (B-28)

and

Fdcl 0 ... 0 ... 0
0 dc2  0 0

D(s) 0 00o 0 ... dci ... 0

0 0 ... 0 ""dcn j(B-29)

The characteristic equation of the closed loop system is

dc, + nl I n12 ... nli ... him

n21 dc2 + n22 n2i n2m

det[D(s) + N(s)] = der =0nil Ni2 ... dci + nil ... nim

nm1 rm2 "" nmi ... dcn + nmm (B-30)

Applying the determinant property fKreyszig (1972)), eq. (B-30) can be decomposed into the

following m different expressions
det[D(s)+ N(s)] = de[Doi(s)]+ det[Noi(s)] = 0, i = 1,2,..., m (B-31)

where der[ Noi (s)] and det[ Doi (s)I are defined as:

del +n, 1 1i2  ." nli ... im

n21 dc2 + n22  n2i n2m

det[Noi( )], - = del = 0
nil i2 ... nii .im

nml nm2 ... nmi dcn+ nmm (B-32)
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dcl + n, I n12 ... 0 ... npm

n21 dc2 + n22 0 n2m

det[Doi(s)] = det =0nil ni2 ... dci ... him

nml nm2 ... 0 ... dcn + lmmj (B-33)

Now the augmented open-loop transfer function (AOLTF) is defined as:

det[Noi(s)] - Ni(s)
ges = det[Doi(s)] Di(s) (B-34)

For a unity-feedback mxm multivaiable system, there are m AOLTFs. Each of the goi(s) is a
transfer function of yi(s)/r(s) effected by the ith (open) unity-feedback loop, and can be

considered as an open-loop transfer function of an unit feedback control system shown in Figure

B-2. The gain and phase margins of an unity-feedback multivariable control system are, in fact, the
gain margins (GM) and phase margins (PM) of all AOLTFs. For an m x m unity-feedback

multivariable control system, thcrc arc m sets of gain margins and phase margins. The calculation

of each set is based upon the corresponding AOLTF and can be checked by Nyquist plots.

The advantage of the above synthesis algorithm is that the plotting methods used in SISO
feedback loop stability tests can be used directly and therefore the gain and phase margins of each

AOLTF are easily formulated. The relationship of the stability margins of AOLTF with parameter

perturbations of the original system is discussed by Tao, Cheng and Han (1991). These parameters

could be the original system gain perturbations. However, further work is needed is to find the

direct relationships of the stability rr,,rgins of AOLTFs with the original control system.

Each of the above three algorithms is airr'ed at calculation of the MIMO gain and phase
margins analogous to those of SISO systems. However, the ultimate goal is to shape the closed-
loop functions such that it satisfies the performance and stability robustness requirements. Since

there is a direct relationship between the open !oop gain and phase and closed-loop characteristics
for SISO systems, the gain margin and phase margin are two parameters to be adjusted to shape

the closed-loop transfer function. There could be other parameters to adjust the closed loop transfer

functions for MIMO systems. Following this concept, Freudenburg and Looze (1988) have

investigated the MIMO closed-loop system properties, and developed rules for shaping the closed-

t )p sensitivity function and complementary sensitivity function by adjusting the open loop gain,
phase and directions.
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APPENDIX C

APPROACH 3: MULTIVARIABLE LOOP SHAPING

Classical "loop-shaping" design methods proceed directly with manipulation of open loop

gain and phase to alter the feedback properties of the system [Freudenburg and Looze (1986),

Freudenburg (1990), Freudenburg and Looze (1988)]. Clearly, one reason for the success of

these methods is that, for a SISO system, open loop gain and phase can be readily related to the

feedback properties. The loop transfer function L(jw) has the following properties:

Is(jo0)l << I

IL(jo) >> I and

T(jwo) = 1 (C- 1)

and

IT(Ji,,)l << 1

IL(jo)I << 1 t, and

S(jo)) = I (C-2)

At frequencies for which the open loop gain is approximately unity, feedback properties depend

critically upon the open loop phase:

IL( a) I IS(jC)l >> I
and 4 and

ZL(jco) = 1800 IT(jo)I >> I (C-3)

Heuristic rules used in design: First, large loop gain y..Ads small sensitivity ani good disturbance

rejection properties, although noise appears directly in the system output. Secoid small loop gain

is required for small noise response and for robustness against large multiplicative uncertainty.

Finally, at frequencies near gain crossover (i.e., IL(ji)I = 1), phase of the open loop system must

remain bounded sufficiently far away from ±1800 to provide an adequate stability margin and to

prevent amplifying the disturbances and noise.

Generalization of Scalar Concepts to Multivariable Systems

Under certain conditions, multivariable systems behave sufficiently like SISO systems such

that classical results can be easily extended. First, it is assumed that the plant to be controlled has a

well-conditioned transfer function matrix. It is also necessary to assume that the disturbances are

injected into the system at the same loop-breaking point at which uncertainties exist, and that the
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levels of uncertainty, noise, and disturbances are approximately equal in all loops of the system.

Hence, tie disturbance and noise signals should satisfy the following conditions of upper bound:

Id(ja)II <- Md(-) VCo and

j~n(jo ))11 M,() VO (C-4)

where MX(o) is an upper bound of the norm of a given transfer matrix x(j(o).

We assume that: (i) each of the outputs of the system is significant; and (ii) the response of

each to disturbances and noise is desired to be small. Therefore, the following assumptions need to

satisfied:

IIYd(j(]O)Il MY d (co) Vco and

Il ,, J o(Dl " , (C -5 )

The above assumptions imply that design specifications can be translated into the bounds:

O[S0 (jo)] _ Ms (a), Vo) and (C-6)

[So( iO)] Ms(o), Vo) (C-7)

Since there is a conflict between achieving these two goals at the same frequency:

SO(S) + TO(S) I (C-8)

there is a trade-off between the feedback properties governed by So and those governed by

The lack of directionality properties and structure in the systems implies that this trade-off is

essentially the same as that in the SISO case. In special cases, the heuristic rules relating the open

loop gain to feedback properties can be extended to MIMO systems. Let L(jw) e CZXn be a

transfer function evaluated at a given frequency (o. The level of gain experienced by an input to the

system described by this transfer function will generally depend upon the direction in which the

input lies. Using the singular value decomposition:

n
L = viu/ Ci (C-9)

i=l

If the open loop transfer matrix has largc gains in all directions or small gains in all

directions, the following analogs to (C-1) and (C-2) are useful in assessing the feedback properties

of the system:
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iSo(jQCO)] << I

_[Lo(j)] >> I1 and

To(jto) I (C-10)

and

[ToT(jco)] << I

c4Lo(jw)] << I <* and

SO(jo) = I (C-11)

Multivariable Design Specifications

Suppose that sensors in some loops of the system have become noisy at a lower frequency

than the sensors in the other loops. This situation can be mathematically modeled by assuming that

the sensor noise can be written as the sum of a stnictured and an unstructured component:

n(s) = ns(s)+ nu(s) (C-12)

The structured noise n. is assumed to lie in a k-dimensional subspace N s  C', and satisfies the

following bound:

IIn.,(jtoA<_M,,(o), Vo (C-a13)

The remainin.r unstructured component of the noise satisfies the bound:

I". (Jo))!- 5 M. (O) V 0 (C- 14)

Suppose that the ratios Mn, (Co) / Md(w) and M., (o) / Md(co) are as depictcd in Figure C- 1. Let

the orthogonal projections onto N5 the subspace which contain the structured noise, and onto

NS , its orthogonal complement, be denoted by P, and Pi, respectively. Then the design

specifications for this system should satisfy the following conditions:

otSo(jo)] << 1 0 <o i  (C-15)

;ifJ70(ito)Ps] << 1 to> (o2 (C- 16)
So(j1o)P I I <<i to)t)g (C-17)

-jTo(io)] << I CO -04 (C- 18)

So (jCO)] < M,(0)) V (C- 19)
-[Toojo)] < MI(CO) V~O (C-20)
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0 db

I M5 MI LgIMU/---

2 3

Figure C- 1. Relative Levels of Sensor Noise to Disturbance Inputs.

The above specifications could be satisfied by requiring the loop gain to be large in the directions

for which the sensitivity is requirtd to be small, and small in the directions for which the

complementary sensitivity is required to bc small. To describe the gain in different directions, the

singular value decomposition of the loop transfer matrixL is partitioned as:

L = VIZIU H + V212U t  (C-21)

wheie Vj,Uj c Cnxk, V2 ,U2 .Cnx "n- k), 
I = diag[a1 ...... 3k] . and

The decomposition requires that inputs to the open leop system lying in the column space of U,
are amplified by the level of gain represented by the singular values and appear as outputs in the

column space of Vi This partition suggests that L be referred to as consisting of a higher gain

subsystem V 111 U1 and a lower gain subsystem V2 Z2U2 . The matrix U/V, provides a

measure of the alignment of the column spaces of U and Vi, and can be interpreted as a measure

of interactions between the high and low gain subsystems.

Motivated by the above discussion, consider the limiting case in which _t Xi] and ojL2 ] in

the subsystem decomposition are allowed to become sufficiently large and sufficiently small,

respectively. The following theorem shows that this strategy would achieve sensor noise rejection

in an (n-k)-dimensional subspace and disturbance rejection in a k-dimensional subspace

corresponding to the directions of small and large loop gain, respectively.
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.. if Let de0UVi 0. Then, if

and

ii[TI-21 << g[ U 2 V2 1 (C-23)

the sensitivity and complementary sensitivity matrices satisfy the following conditions:

Sensitivity' matrix: a[S - Sapp] < ' a ;[T Tap] << I (C-24)

where

Sapp =U2(V2Iu2)-IvY2

- L 2 (vl/ U)W 2 V 1 u
V1(VIu 2 )(V2 U 2 ) YH + V2 V

Complementary sensitivity matrix: Tapp = V! (Ul V ) - Ul

---- U2 (Uv 1 )(u' VI )-, u + l u

- VI (Uv 1 )- I (u H v 2 )V2H +v 1v (C-25)

The above theorem allows feedback properties to be approximated when open loop gain is

both large and small in different directions at the same frequency. However, one must take caje to

correctly identify the input and output directions of the high and low gain subsystems with the

subspace of C" in which the signals are to be rejected.

Next consider two additional cases: when the gain is assumed to be either (a) large in some

directions or (b) small in some directions, and in each case, no assumption is placed upon gain in

orthogonal directions, the following two theorems show that there exists an analogue to scalar gain

crossover frequency range in which knowledge of gain alone is insufficient to allow approximation
of feedback properties; hence it is necessary to consider some sort of phase information.
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~ Lt e4U"V]H 0 and de4 V4'"U, + Z2] * 0. Then, if

atX >max 2{u')[ -("v)(LU 2 + 12)1(viI)}

{(UC Vi)' (U'V 2)2(Vi'U 2 + 2) I(vi'U2 )} (C-26)

then the sensitivity and complementary sensitivity matrices satisfy the following conditions:

T -Tap]«<< and C4S -S,,p]«<1 (C-27)(VH ~-1 l

where Sapp =U 2 (V2jU2 +L 2 ) V2

and

Tapp I_,- Sap 1) ; ." I-- + U (V"22)- X2(VP U2 + L2 )-'2" (-8

ThoemC3 Let de4V12HU2] 0 and de4I + U{'Vi . Then i

[V2H U2 ]

<<12 min~uL(Pu)I +Ut'viziY)'(Ulv]v 2 u)

)' 1 ( i'UI )(I + U ' VI ' ( ) (C-29)

the sensitivity and complementary sensitivity matrices satisfy the following conditions:

ls - SappI<<I and aTTapp]1 <<
It If I' -I)'(+ /V,2 -1u;

where Sapp I--Tapp  (V 1U2 ) V' + VI(Ut'V1 ) (I +U('V1,)

Tapp = V I+,I I I (C-30)
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Renrk: Theorems C-3 and Theorem C-2 show that the conditions:

-i[-1< Gjb'2 Vd1 and _0[L 21 > + 2 u4V 21

and the conditions:

{p>and &if~ XI<<« [U I

fail to hold at the same frequencies. Since the knowledge of the open loop singular value gains

does not pxovide sufficient information to allow feedback properties to be approximated, additional

information about the phase is necessary. This area requires further research.

In conclusion, the third approach by Freudenberg and Looze (1986), (1990), and (1988)

have introduced a general concept of the relationship of the gain, phase and direction of the open

loop transfer matrix with the closed-loop sensitivity and complementary sensitivity matrices. The

rules developed in each of the three theorems can serve as a guide for design and robustness

testing. However, more direct rules still need to be developed for robustness assessment of MIMO

systems.
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